
ELSEVIER 

Available online at www.sciencedirect.com 

SCIENCE ~_~DIRECT" APPLIED 
MATHEMATICS 

A N D  M E C H A N I C S  

www.elsevier.com/locate/jappmathmech 

Journal of Applied Mathematics and Mechanics 69 (2005) 315-321 

INTEGRAl. EQUATIONS OF DYNAMIC PROBLEMS FOR 
MULTILAYERED MEDIA CONTAINING A SYSTEM 

OF CRACKSt 

O. D. P R Y A K H I N A  and A. V. S M I R N O V A  

Krasnodar 

e-mail: donna@kubsu.ru 

(Received 15 June 2004) 

A new method of determining the dynamic characteristics of multilayered semi-bounded media with defects of the inclusion or 
crack type at the layer interfaces [1] is used to solve antiplane problems. Systems of integral equations of the corresponding 
boundary-value problems are constructed and the properties of their kernels are investigated. The dispersion curves of the 
determinants and matrix elements of these systems are analysed as functions of the number of layers and their elastic and geometric 
characteristics © 2005 Elsevier Ltd. All rights reserved. 

1. G E N E R A L  M A T R I X - F U N C T I O N A L  RELATIONS 

In the problem of the harmonic oscillations of a package of N plane-parallel linearly-deformable layers, 
which has physical-mechanical properties of crack- or cavity-type defects at the interfaces, formulae 
have been obtained that, in terms of Fourier transforms, express the amplitudes of the displacement 
vectors Wk of points of the medium and the stresses Tk at the layer interfaces as functions of the 
amplitudes of the vectors of the surface load To and displacement jumps fro(or, 13) at the edges of the 
cracks [1, 2] 

N-I  

Wk(~, ~, Zk) = KN-k+ 1( (1~, 9, zk)To( a, 13)+ ~ Rk,~(a, [~)fm( a, 13) 
m = l  

(1.1) 

N - I  

Tk(l~, ~) = Lk(~,  ~ ) T o ( ~ ,  9)  -I- E Lkm(~ '  ~) fm(~ '  9) ,  
m=l 

k = 1,2 .. . . .  N (1.2) 

The subscript k corresponds to the interface of the k-th and (k + 1)-th layers, m corresponds to defects 
on the boundary of the rn-th and (m + 1)-th layers, zk is a local coordinate, which varies within the 
thickness of the k-th layer ( [zgl _ hk), To = Ft0, Tk =Ftg, Wg = F%, where F is the two-dimensional 
Fourier transform with respect to the variables x and y with parameters a and ~, tg = {fig, t2k, t3k} a r e  

stress vectors characterizing the interaction between the layers, and Wk = {wig, W2k, W3k} are the 
displacement vectors of points of the k-th layer. 

The matrices Kn, In, Rkm, Lkm have the uniform structure characteristic for Green's matrix-symbols 
of the appropriate boundary-value problems for media without defects [3]. Their elements depend on 
the oscillation frequency m and on the geometric and mechanical properties of the layers: the thickness 
2hk, the density pg, the shear modulus gk, and Poisson's ratio Vk. 

"~Prikl. Mat. Mekh. Vol. 69, No. 2, pp. 345-351, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.03.018 



316 O.D.  Pryakhina and A. V. Smirnova 

If mixed conditions are specified on the surface of the medium and at the layer interfaces 

Z = 0: W 1 -- W 0 ( x , y ) ,  ( x , y )  ~ f~o; to = 0, ( x , y )  ~ f~o 

z k = -hk: t k = tkp(X,y), ( x , y )  ~ ~kp; AWk = O, ( x , y )  ~ f~kp; P = 1, 2 . . . . .  M k 

then the matrix-functional relations (1.1) for k = 1 and zl = hi, together with relations (1.2) for 
k = 1, 2, . . . ,  N - 1, lead to systems of integral equations for the contact stresses t0(x, y) and jumps of 
the displacement vectors Awkp(X, y) at the edges of the cracks. Here f~0 is the region of contact of the 
punch with the surface of the medium z = 0, w0 are the displacements given in the region f~0, Mk is the 
number of cracks in the plane zk = -hk, ~2kp are the regions occupied by the cracks, and tkp are given 
stresses at the edges of the cracks. 

We will derive such systems for the case of antiplane vibrations. 

2. F U N C T I O N A L  R E L A T I O N S  D E S C R I B I N G  A N T I P L A N E  
O S C I L L A T I O N S  

We will consider the problem of harmonic oscillations of a package of N plane-parallel ideally elastic 
layers of thickness H = 2(hl + h2 + ... + hu) with rigidly restrained lower face and occupying a volume 
- H  < z < O, - ~  < x, y < + ~ (hk is the half-thickness of the k-th layer). At the interfaces of the physical- 
mechanical parameters there are defects of the crack type, situated in the regions 

~"~km:{Zk=--hk , akm<_X<--bkm,--oo<y<+oo}, m = 1,2 . . . . .  Mk, k = 1,2 . . . . .  N - 1  

The surface of the medium is subject to a certain dynamical action characterized by the vector of 
distributed stresses t0(x, y)e -i°~t, which is either given or may be determined by solving a contact problem. 

We shall assume that the given and unknown vector quantities have only one non-zero component, 
which does not depend on the y coordinate or, in terms of Fourier transforms, on the parameter 15: 

T o = {0, To(a), 0}, W k = {0, Wk(ct, zk), 0}, T k = {0, Tt(a),  0}, fk = {0, fk(O~), 0} 

In that case the matrix relations (1.1) and (1.2) become functional relations and the construction of 
the solution is simplified considerably. 

In terms of Fourier transforms, we will express Green's functions of packages of m layers (m = 1, 2, 
..., N) rigidly coupled with an undeformable base as ratios of entire functions: 

km(Z ) m 
Gm(z ) = Am ' - H m < z < O ,  H m = 2 ]F hN_n+ 1 

n=l 

Note that kin(z) and A m depend on the parameter cz of the Fourier transform, the frequency of 
harmonic oscillations co, and the geometric and mechanical parameters of layers N, N - I, etc. to 
N -  rn + 1, inclusive. Throughout, in order to abbreviate the notation, the only argument indicated in 
functional relations will be that guaranteeing their unambiguous interpretation. 

In the case of antiplane oscillations, the matrices occurring in formulae (1.1) and (1.2) are replaced 
by the corresponding functions 

KN k+ l(hk) = (--1)k+ lkN-k+ l(hk) 
- ~kAN 

Lk (_l)k+lAN_k Lk m (_l)k+m-1 1 ~gmAN-kR~(hm) , k > m  = , = " A 0--- 1 (2.1) 
A N A-N~tkAN_mRk(hk), k<_m ' 

~Lm, k = 1 
I 

Rk m = t(-1)k+m([2m/[tk)Rm(hm)kN_k+ l(hk)/AN, k ~: 1, 

k+m-1 
[ ( -1 )  Dk_i(hk_l )AN_m/Au,  k ~  l ,  k<_m 

k > m  
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where Rk(hk) and Dk(hk) are defined by the recurrence formulae 

Rl(hk)  = (Y2kSh(2(Y2khk), Dl(hk) = ch(2~z,~hk) 

Rk(hk) = Rl(hk)Dk- l(hk-1) + gk- 1Dl(hk)Rk- l(hk- 1) 
-2 

Ok(hk) = 01 (hk)Dk- 1 (hk- 1 ) + gk-  1 (~2kR1 (hk)Rk- 1 (hk- 1 ) 

gk-1 -- 0{2 -- Pko)2' gk-  1 = "" ~2k ~/ gk --~k; k = 2, 3, . ,N 

If mixed conditions are prescribed at the surface of the medium and the layer interfaces, the required 
system of integral equations is set up from the relations 

N-1 
Wl(hl) "=" K~(hl )To + Z Lmfm' 

m=l 
Mm 

fm(O0 = Z F(Awmp ) 
p=l 

N-1 
Tk = LkTo + Z Lkmfm' 

m=l 
k = l , 2  . . . . .  N - 1  

We define a matrix K ( c  0 = IlKijlli,~ = i with elements 

Kll = KN(hl), Klj = Kjl = Lj_ 1, Kij = L(i_l)(j_l); i , j  = 2,3 . . . . .  N 

and integral operators 

~(~2)q : Ik(x-~)q({)d~,  k (x )= ~IK(oOe-iaxdo~ 
8 

N-1 Mk 

~q (t0' AWkm) = ~q l(~0)t0+ Z Z ~('q(k+l) (~km)Awkm' 
k=lm=l 

q = 1,2 . . . . .  N 

The choice of the contour 8 is dictated by the radiation principle [4]. The matrix K(¢z) will be called 
the matrix-symbol of the system of integral equations just constructed. 

In the notation we have adopted, the integral equation of dimension M + 1 (M = 341 + M2 + ... + 
MN- 1 is the total number of cracks in the medium) may be written in the form 

Jgl(to, AWkm) = Wo(X ), x ~  ~'~o; ~'p+l(to, AWkm) = tpn(X), X e  ~-~pn 

n = 1,2 . . . . .  Mp; p = 1,2 . . . . .  N - 1  

These equations enable us to investigate various aspects of the dynamics of a multilayered base. 
Setting fm(O 0 = 0 for all m = 1, 2, ..., N - 1, we obtain a contact problem for a multilayered base 

without defects, arriving at the well-known one-dimensional integral equation 

~l l(~0)t0 = Wo(X ), x~  ~o 

Taking T0(s) = 0, we obtain the dynamic problem of the oscillations of a multilayered medium 
generated by oscillations of only the edges of the cracks, and the corresponding system of convolution 
integral equations 

N-I  M~ 

Z Z ~]~(P+ 1)(k+ 1)(~-~km)AWkm = tpn(X)' 
k=lm=l 
n = 1,2 . . . . .  Mp; p = 1,2 . . . . .  N - 1  

X E ~pn 
(2.2) 
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Since this problem is of independent interest, we re-denote the matrix symbol of the last system by 
L(a) = Ilgij 11~721. It is obvious that L(o 0 is obtained from K(~) by eliminating the first row and the 
first column. 

Note that integral equations (2.2), considered with the same mechanical parameters for all the layers, 
give the solution of the dynamic problem for a homogeneous layer with a system of cracks in the planes 
Zp = -hp . 

Having functional relations and integral equations of the problems for a package of layers, it can 
easily be generalized to the case of a layered half-space. When that is done, the general appearance of 
the notation is the same, but when the elements of the matrix-symbols K = (~) and L = (~) are defined, 
formulae (2.1) must be considered with 

kl(hN) = 1, AI(hN) ----  (~2N 

Putting 

kl(hN) = 1, AI(hN) = O2N, Dl(hl)  = 1, Rl(hl)----O21 

in these relations, we obtain functional relations and the matrix LZ (a) for a layered space. 

3. E X A M P L E :  T H E  CASE N = 3 

Forming the system of functional equations for N = 3, we have: 
the displacements of points of the medium surface 

Wl(hl )  = (k3(h 1) To/~l - A2f 1 + Alf2)/A3 

the stresses at the layer interfaces 

T 1 = ( -  AET 0 -  P. lRl (h l )AEf l  + ~ l R l ( h l ) D l ( h 3 ) f 2 ) / A 3  

T 2 = (A1T O + ~ t l R l ( h l ) D l ( h 3 ) f  1 - ~2R2(h2)Dl(h3)f2) /A3 

To construct the system of integral equations, we rewrite relations (3.1) and (3.2) in the form 

where 

Q = {To, f l ,  f 2  }, 

Under these conditions, 

W ( a )  = K ( ~ ) Q ( a )  

w = ¢Wl(hl), T1, T2 , K(o ) = IIg,jll,3  

(3.1) 

(3.2) 

(3.3) 

X ~ o ,  ~o: {z=O, Ixl<a,-~<y<+ 0~} 

aln<X<bln, n = 1,2 . . . . .  M 1 

a2p<x<b2p, p = 1,2 . . . . .  M 2 

Putting f l (a)  = 0 (or f2(ot) = 0), we obtain a system of integral equations for the case of a single 
crack or a system of cracks situated in a three-layered medium only in the plane z = -2hl (or only in 
the plane z = -2hl - 2h2). 

We have 

..q~l(t0, AWkm) = Wo(X), 

,~2(t0, AWkm) = tln(X), 

~3(t0 , AWkm) -. t2n(X), 

detK = ch(2t~21hl)tP(h 2, h3)/A 3, tp(h 2, h3) = ~l,2t~22sh(2t~22h2)ch(2t~23h 3) 

Using Eqs (3.3), we obtain integral equations and systems of integral equations for a variety of problems. 
We present the system of integral equations in the general case, when 

T 0 ( ~ ) # 0 ,  f l ( ~ ) ~ 0 ,  f 2 ( ~ ) # 0  
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When T0((z) = 0, only relations (3.2) participate in the formation of the system of integral equations; 
they may be written in matrix form as 

T((Z) = L(tx)f(¢x), T = {T1, T2} , f = {fl ,  f2} 

where 

detL = glCY21sh(2G21hl)tP(h2, h3)lA3, A 3 = A3(o~,o~,gk, pk, hk), k = 1,2,3 

4. P R O P E R T I E S  OF THE MATRIX-SYMBOLS OF SYSTEMS OF 
I N T E G R A L  EQUATIONS 

In order to determine classes of well-posedness and to construct solutions of systems of integral 
equations, it is necessary to study the properties of the elements of their matrix-symbols. It is most 
important to describe the asymptotic behaviour of the elements as [(zl --* oo and to investigate the 
behaviour of the real zeros and poles (dispersion curves) of the elements and the determinants of these 
matrices in the (Re(z, m) plane. 

It has been established that the matrices K((z), L((z) are symmetric and may be represented in the 
form 

K ( ~ ) =  ~----NI[kij((Z)I[Nj 1' L(ot)  = -A'-NIIlij((Z)IINi,; 1 
= ~ ~ l  

The elements k/j((z), lo.((z ) are entire even functions of the parameter (z; AN is the denominator of Green's 
function GN for a multilayered package without defects. 

For the elements of the matrix K(a) on the contour 8 we have the following asymptotic estimates as 
I(zl 

113{I-1[ g i - 1  M[[1 + O(1~[-2)], i = 2, 3 . . . . .  N 
KII((Z) = 7 1  l+O(l°tt-2)]' Kii ( (z ) -  l + g i _  1 

KU((Z) = (-1)J+Iplj((Z)[1 + O(Iot[-2)l, j = 2, 3 .. . . .  N 

Kij((z) = (--1)i+j+ll + gi_l 1 +o(l~tr2)], i , j ~ l 

where 

' f ' - ' /  
2 ' - '  -I(X[ ,~, 2h k Pij((z) = j-1 exp 

l - i (  1 +gk) \ k=i } 
k=i 

The asymptotic behaviour of the element Kn for a multilayered medium is identical with the asymptotic 
behaviour of the function Gl((z, gl), while that of the remaining diagonal elements K/i is determined 
by the asymptotic behaviour of the function -G-~l((z, I& - lgi/(gi- 1 + gi)). 

The method we have used yields relations convenient for numerical analysis not only of the elements 
but also of the determinants of the matrices 

detK((z) = 
Dl(hi)detL(lx) 

g i R l ( h i  ) ' 

D "" .N-1  
( 1 )  N-1 l(nN) r'r R (h " detL(tx) = -  ~ I l g k  1 k) 

7---1 

Note that in the case of a single crack in the plane zm = - h  m of an N-layered medium, we have 

detK(~) = (-1)N-lAin(hi ,  h 2 . . . . .  hm)AN_m(hN ' hN_l . . . . .  hm * I)/AN 
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Hence it follows that if the following conditions are satisfied 

AN- m(hN, hN- l ..... hm + I ) = An(hi, h2 ... . .  hn) 

AN_n(hN, hN_ 1 ..... hn+l) = Am(hph 2 ..... hm) (n+m=N) 

then the determinants of the matrices corresponding to a single crack in the plane zn = -hm or in the 
plane zn = -hn have the same zeros. In a homogeneous medium, the determinants of the matrix K with 
the crack situated at the level z = -h or at the level z = - H  + h are equal. 

We also note that if a single crack is situated in the plane z = -HI2 of a homogeneous layer, then all 
the zeros of the element K22 , with the exception of at 2 = 131f.oz/l.t1, coincide with the zeros of Kn,  that 
is, with the zeros of Green's function of a layer without defects. 

5. N U M E R I C A L  R E S U L T S  

For the case considered in Section 3 - a three-layered medium - we present the results of numerical 
analysis of the dispersion curves of the elements (Fig. 1) and the determinants (Fig. 2) of the matrix 
K, as a function of the geometric and mechanical parameters of the problem with vi = 0.3, Pi = 1 
(i = 1, 2, 3), H = 1, 2hi = ha = 2h3 = 1/4; the dimensionless values of the shear moduli are indicated 
in the appropriate parts of the figures; the curves of the poles are represented by the solid curves. 
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For the diagonal elements of the matrices, as in the case of a defect-free medium, one observes 
alternation of zeros and poles (Fig. 1). When there is a system of cracks in a homogeneous layer, the 
diagonal elements may have identical zeros. Thus, curves 2 and 3 in Fig. 1 are common to the elements 
/£11, K22 and K33, and curve 1 is common to the elements K22 and K33. 

In Fig. 2 we show dispersion curves of the determinants K(a, 0~) corresponding to the presence of 
a single crack in the plane z = -H/2  and two cracks in the planes z = -H/4,  z = -3H/4.  In the case of 
one crack in a layered medium, detK(a, co) has zeros and poles beginning from some point co*. If there 
are two or more cracks in the medium, a curve of zeros occurs emanating from the origin. It is 
characteristic that for a crack in the middle of a homogeneous layer, all the zeros of the determinant 
coincide with the odd-numbered zeros of the element Kll (with the curves numbered as they appear 
on the axis o~ = 0), that is, with the odd-numbered zeros of Green's function for a defect-free medium. 
For a layered medium, this is true only for a certain symmetry of the mechanical and geometric 
parameters of the problem, as for example in the case shown in Fig. 2. 
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